Package: fda.usc 2.2.0

fda.usc: Functional Data Analysis and Utilities for Statistical Computing

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

Authors:Manuel Febrero Bande [aut], Manuel Oviedo de la Fuente [aut, cre], Pedro Galeano [ctb], Alicia Nieto [ctb], Eduardo Garcia-Portugues [ctb]

fda.usc_2.2.0.tar.gz
fda.usc_2.2.0.zip(r-4.5)fda.usc_2.2.0.zip(r-4.4)fda.usc_2.2.0.zip(r-4.3)
fda.usc_2.2.0.tgz(r-4.4-x86_64)fda.usc_2.2.0.tgz(r-4.4-arm64)fda.usc_2.2.0.tgz(r-4.3-x86_64)fda.usc_2.2.0.tgz(r-4.3-arm64)
fda.usc_2.2.0.tar.gz(r-4.5-noble)fda.usc_2.2.0.tar.gz(r-4.4-noble)
fda.usc_2.2.0.tgz(r-4.4-emscripten)fda.usc_2.2.0.tgz(r-4.3-emscripten)
fda.usc.pdf |fda.usc.html
fda.usc/json (API)
NEWS

# Install 'fda.usc' in R:
install.packages('fda.usc', repos = c('https://moviedo5.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/moviedo5/fda.usc/issues

Datasets:

On CRAN:

functional-data-analysis

9.40 score 10 stars 22 packages 536 scripts 1.8k downloads 34 mentions 227 exports 59 dependencies

Last updated 23 hours agofrom:eb82caa75f. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-win-x86_64NOTENov 05 2024
R-4.5-linux-x86_64NOTENov 05 2024
R-4.4-win-x86_64NOTENov 05 2024
R-4.4-mac-x86_64NOTENov 05 2024
R-4.4-mac-aarch64NOTENov 05 2024
R-4.3-win-x86_64NOTENov 05 2024
R-4.3-mac-x86_64NOTENov 05 2024
R-4.3-mac-aarch64NOTENov 05 2024

Exports:AdotAKer.cosAKer.epaAKer.normAKer.quarAKer.triAKer.unifargvalsargvals.equibcdcor.distcat2measclassif.cv.glmnetclassif.DDclassif.depthclassif.gbmclassif.gkamclassif.glmclassif.gsamclassif.gsam.vsclassif.kernelclassif.kfoldclassif.knnclassif.ksvmclassif.ldaclassif.naiveBayesclassif.nnetclassif.npclassif.qdaclassif.randomForestclassif.rpartclassif.svmcolnames.fdatacond.Fcond.modecond.quantilecount.na.fdatacov.test.fdatacreate.fdata.basiscreate.pc.basiscreate.pls.basiscreate.raw.fdataCV.Sdcor.distdcor.testdcor.xydepth.FMdepth.FMpdepth.FSDdepth.KFSDdepth.modedepth.modepdepth.RPdepth.RPDdepth.RPpdepth.RTdev.Sdfv.statisticdfv.testdis.cos.corfanova.heterofanova.onefactorfanova.RPmfdatafdata.bootstrapfdata.cenfdata.derivfdata2basisfdata2fdfdata2pcfdata2plsFDRfEqDistrib.testflm.Ftestflm.testfmean.test.fdatafregre.basisfregre.basis.cvfregre.basis.frfregre.bootstrapfregre.gkamfregre.glmfregre.glm.vsfregre.glsfregre.gsamfregre.gsam.vsfregre.iglsfregre.lmfregre.npfregre.np.cvfregre.pcfregre.pc.cvfregre.plmfregre.plsfregre.pls.cvFtest.statisticfunc.meanfunc.mean.formulafunc.med.FMfunc.med.modefunc.med.RPfunc.med.RPDfunc.med.RTfunc.trim.FMfunc.trim.modefunc.trim.RPfunc.trim.RPDfunc.trim.RTfunc.trimvar.FMfunc.trimvar.modefunc.trimvar.RPfunc.trimvar.RPDfunc.trimvar.RTfunc.varGCCV.SGCV.Sgridfdatah.defaultIKer.cosIKer.epaIKer.normIKer.quarIKer.triIKer.unifinfluence_quaninprod.fdataint.simpsonint.simpson2is.fdatais.ldatais.mfdataKer.cosKer.epaKer.normKer.quarKer.triKer.unifKernelKernel.asymmetricKernel.integratekmeans.center.inikmeans.fdldataldata.cenLMDC.regreLMDC.selectmdepth.FMmdepth.FSDmdepth.HSmdepth.KFSDmdepth.LDmdepth.MhDmdepth.RPmdepth.SDmdepth.TDmetric.distmetric.DTWmetric.hausdorffmetric.klmetric.ldatametric.lpmetric.mfdatametric.TWEDmetric.WDTWmfdatamfdata.cenMMD.testMMDA.testncol.fdataNCOL.fdatancol.ldataNCOL.ldatancol.mfdataNCOL.mfdatanorm.fdnorm.fdatanrow.fdataNROW.fdatanrow.ldataNROW.ldatanrow.mfdataNROW.mfdataops.fda.uscoptim.basisoptim.nporder.fdataoutliers.depth.pondoutliers.depth.trimoutliers.lrtoutliers.thres.lrtP.penaltyPCvM.statisticplot.fdataplot.lfdatapred.MAEpred.MSEpred.RMSEpred2measpvalue.FDRr.ourangevalrcombfdatardir.pcrownames.fdatarp.flm.statisticrp.flm.testrproc2fdatarwildS.basisS.KNNS.LCRS.LLRS.LPRS.NWsemimetric.basissemimetric.derivsemimetric.fouriersemimetric.hshiftsemimetric.mplsrsemimetric.pcatab2meastitle.fdatatrace.matrixunlist_fdataVar.eVar.yweights4classXYRP.test

Dependencies:ashbitopscliclustercodetoolscolorspacedeSolvedoParallelevaluatefansifarverfdafdsFNNforeachggplot2gluegtablehdrcdehighrisobanditeratorskernlabKernSmoothknitrkskSampleslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalesSuppDiststibbleutf8vctrsviridisLitewithrxfunyaml

Readme and manuals

Help Manual

Help pageTopics
Functional Data Analysis and Utilities for Statistical Computing (fda.usc)fda.usc-package fda.usc
Performance measures for regression and classification modelsaccuracy cat2meas pred.MAE pred.MSE pred.RMSE pred2meas pred2meas. tab2meas
aemet dataaemet
DD-Classifier Based on DD-plotclassif.DD
Classifier from Functional Dataclassif.depth
Classification Fitting Functional Generalized Kernel Additive Modelsclassif.gkam
Classification Fitting Functional Generalized Linear Modelsclassif.glm
Classification Fitting Functional Generalized Additive Modelsclassif.gsam
Variable Selection in Functional Data Classificationclassif.gsam.vs
Functional Classification usign k-fold CVclassif.kfold
Functional classification using ML algotithmsclassif.cv.glmnet classif.gbm classif.ksvm classif.lda classif.ML classif.multinom classif.naiveBayes classif.nnet classif.qda classif.randomForest classif.rpart classif.svm
Kernel Classifier from Functional Dataclassif.kernel classif.knn classif.np
Conditional Distribution Functioncond.F
Conditional modecond.mode
Conditional quantilecond.quantile
Create Basis Set for Functional Data of fdata classcreate.fdata.basis create.pc.basis create.pls.basis create.raw.fdata
The cross-validation (CV) scoreCV.S
Distance Correlation Statistic and t-Testbcdcor.dist dcor.dist dcor.test dcor.xy
Computation of depth measures for functional dataDepth depth.fdata depth.FM depth.FSD depth.KFSD depth.mode depth.RP depth.RPD depth.RT
Provides the depth measure for multivariate datadepth.mdata Depth.Multivariate mdepth.FM mdepth.FSD mdepth.HS mdepth.KFSD mdepth.LD mdepth.MhD mdepth.RP mdepth.SD mdepth.TD
Provides the depth measure for a list of p-functional data objectsdepth.FMp depth.mfdata depth.modep depth.RPp
Descriptive measures for functional data.Descriptive func.mean func.mean.formula func.med.FM func.med.mode func.med.RP func.med.RPD func.med.RT func.trim.FM func.trim.mode func.trim.RP func.trim.RPD func.trim.RT func.trimvar.FM func.trimvar.mode func.trimvar.RP func.trimvar.RPD func.trimvar.RT func.var
The deviance scoredev.S
Delsol, Ferraty and Vieu test for no functional-scalar interactiondfv.statistic dfv.test
Proximities between functional datadis.cos.cor
ANOVA for heteroscedastic dataanova.hetero fanova.hetero
One-way anova model for functional dataanova.onefactor fanova.onefactor
Functional ANOVA with Random Project.anova.RPm fanova.RPm summary.fanova.RPm
fda.usc internal functions!=.fdata *.fdata +.fdata -.fdata /.fdata ==.fdata anyNA.fdata argvals argvals.equi c.fdata colnames.fdata count.na.fdata dim.fdata fda.usc.internal fdata.trace is.na.fdata length.fdata missing.fdata NCOL.fdata ncol.fdata NROW.fdata nrow.fdata omit.fdata omit2.fdata rangeval rownames.fdata trace.matrix unlist_fdata [.fdata [.fdist ^.fdata
Converts raw data or other functional data classes into fdata class.fdata
Bootstrap samples of a functional statisticfdata.bootstrap fdata.bootstrap2
Functional data centred (subtract the mean of each discretization point)fdata.cen
Computes the derivative of functional data object.fdata.deriv
fdata S3 Group Generic Functionsfdata.methods is.fdata Math.fdata Ops.fdata order.fdata split.fdata Summary.fdata
Compute fucntional coefficients from functional data represented in a base of functionsfdata2basis summary.basis.fdata
Converts fdata class object into fd class objectfdata2fd
Principal components for functional datafdata2pc
Partial least squares components for functional data.fdata2pls
False Discorvery Rate (FDR)FDR pvalue.FDR
Tests for checking the equality of distributions between two functional populations.fEqDistrib.test MMD.test MMDA.test XYRP.test
Tests for checking the equality of means and/or covariance between two populations under gaussianity.cov.test.fdata fEqMoments.test fmean.test.fdata
F-test for the Functional Linear Model with scalar responseflm.Ftest Ftest.statistic
Goodness-of-fit test for the Functional Linear Model with scalar responseflm.test
Functional Regression with scalar response using basis representation.fregre.basis
Cross-validation Functional Regression with scalar response using basis representation.fregre.basis.cv
Functional Regression with functional response using basis representation.fregre.basis.fr
Bootstrap regressionfregre.bootstrap fregre.bootstrap2
Fitting Functional Generalized Kernel Additive Models.fregre.gkam
Fitting Functional Generalized Linear Modelsfregre.glm
Variable Selection using Functional Linear Modelsfregre.glm.vs
Fit Functional Linear Model Using Generalized Least Squaresfregre.gls
Fitting Functional Generalized Spectral Additive Modelsfregre.gsam
Variable Selection using Functional Additive Modelsfregre.gsam.vs
Fit of Functional Generalized Least Squares Model Iterativelyfregre.igls
Fitting Functional Linear Modelsfregre.lm
Functional regression with scalar response using non-parametric kernel estimationfregre.np
Cross-validation functional regression with scalar response using kernel estimation.fregre.np.cv
Functional Regression with scalar response using Principal Components Analysisfregre.pc
Functional penalized PC regression with scalar response using selection of number of PC componentsfregre.pc.cv
Semi-functional partially linear model with scalar response.fregre.plm
Functional Penalized PLS regression with scalar responsefregre.pls
Functional penalized PLS regression with scalar response using selection of number of PLS componentsfregre.pls.cv
The generalized correlated cross-validation (GCCV) score.GCCV.S
The generalized correlated cross-validation (GCCV) scoreGCV.S
Calculation of the smoothing parameter (h) for a functional datah.default
Quantile for influence measuresinfluence_quan
Functional influence measuresinfluence.fregre.fd
Inner products of Functional Data Objects o class (fdata)inprod.fdata
Simpson integrationint.simpson int.simpson2
Symmetric Smoothing Kernels.Ker.cos Ker.epa Ker.norm Ker.quar Ker.tri Ker.unif Kernel
Asymmetric Smoothing KernelAKer.cos AKer.epa AKer.norm AKer.quar AKer.tri AKer.unif Kernel.asymmetric
Integrate Smoothing Kernels.IKer.cos IKer.epa IKer.norm IKer.quar IKer.tri IKer.unif Kernel.integrate
K-Means Clustering for functional datakmeans.center.ini kmeans.fd
ldata class definition and utilitiesc.ldata is.ldata ldata ldata.cen Math.ldata mean.fdata mean.ldata names.ldata NCOL.ldata ncol.ldata NROW.ldata nrow.ldata Ops.ldata plot.ldata subset.ldata Summary.ldata [.ldata
Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)LMDC.regre LMDC.select
Mithochondiral calcium overload (MCO) data setMCO
Distance Matrix Computationmetric.dist
DTW: Dynamic time warpingmetric.DTW metric.TWED metric.WDTW
Compute the Hausdorff distances between two curves.metric.hausdorff
Kullback-Leibler distancemetric.kl
Distance Matrix Computation for ldata and mfdata class objectmetric.ldata metric.mfdata
Approximates Lp-metric distances for functional data.metric.lp
mfdata class definition and utilitiesc.mfdata is.mfdata Math.mfdata mean.mfdata mfdata mfdata.cen names.mfdata NCOL.mfdata ncol.mfdata NROW.mfdata nrow.mfdata Ops.mfdata plot.mfdata subset.mfdata Summary.mfdata [.mfdata
A wrapper for the na.omit and na.fail function for fdata objectna.fail.fdata na.omit.fdata
Approximates Lp-norm for functional data.norm.fd norm.fdata
ops.fda.usc Options Settingsops.fda.usc
Select the number of basis using GCV method.min.basis optim.basis
Smoothing of functional data using nonparametric kernel estimationmin.np optim.np
outliers for functional datasetoutliers.depth.pond outliers.depth.trim Outliers.fdata outliers.lrt outliers.thres.lrt quantile.outliers.pond quantile.outliers.trim
Penalty matrix for higher order differencesP.penalty
PCvM statistic for the Functional Linear Model with scalar responseAdot PCvM.statistic
phoneme dataphoneme
Plot functional data: fdata class objectlines.fdata plot.bifd plot.depth plot.fdata plot.lfdata plot.mdepth title.fdata
poblenou datapoblenou
Predicts from a fitted classif object.predict.classif
Predicts from a fitted classif.DD object.predict.classif.DD
Predict method for functional linear model (fregre.fd class)predict.fregre.fd
Predict method for functional response modelpredict.fregre.fr
Predict method for functional linear modelpredict.fregre.gkam predict.fregre.glm predict.fregre.gsam predict.fregre.lm predict.fregre.plm
Predictions from a functional gls objectpredict.fregre.gls predict.fregre.igls
Ornstein-Uhlenbeck processr.ou
Utils for generate functional datagridfdata rcombfdata
Data-driven sampling of random directions guided by sample of functional datardir.pc
Statistics for testing the functional linear model using random projectionsrp.flm.statistic
Goodness-of fit test for the functional linear model using random projectionsrp.flm.test
Simulate several random processes.rproc2fdata
Wild bootstrap residualsrwild
Smoothing matrix with roughness penalties by basis representation.S.basis
Smoothing matrix by nonparametric methodsS.KNN S.LCR S.LLR S.LPR S.np S.NW
Proximities between functional datasemimetric.basis
Proximities between functional data (semi-metrics)semimetric.deriv semimetric.fourier semimetric.hshift semimetric.mplsr semimetric.NPFDA semimetric.pca
Subsettingsubset.fdata
Summarizes information from kernel classification methods.print.classif summary.classif
Correlation for functional data by Principal Component Analysissummary.fdata.comp
Summarizes information from fregre.fd objects.plot.summary.lm print.fregre.fd print.fregre.igls print.fregre.plm summary.fregre.fd summary.fregre.igls summary.fregre.lm
Summarizes information from fregre.gkam objects.print.fregre.gkam summary.fregre.gkam
tecator datatecator
Sampling Variance estimatesVar.e Var.y
Weighting toolsweights4class